4,453 research outputs found

    Kernel estimates for nonautonomous Kolmogorov equations

    Full text link
    Using time dependent Lyapunov functions, we prove pointwise upper bounds for the heat kernels of some nonautonomous Kolmogorov operators with possibly unbounded drift and diffusion coefficients

    Simplified models of electromagnetic and gravitational radiation damping

    Get PDF
    In previous work the authors analysed the global properties of an approximate model of radiation damping for charged particles. This work is put into context and related to the original motivation of understanding approximations used in the study of gravitational radiation damping. It is examined to what extent the results obtained previously depend on the particular model chosen. Comparisons are made with other models for gravitational and electromagnetic fields. The relation of the kinetic model for which theorems were proved to certain many-particle models with radiation damping is exhibited

    Thermodynamics of micellization of oppositely charged polymers

    Full text link
    The complexation of oppositely charged colloidal objects is considered in this paper as a thermodynamic micellization process where each kind of object needs the others to micellize. This requirement gives rise to quantitatively different behaviors than the so-called mixed-micellization where each specie can micellize separately. A simple model of the grand potential for micelles is proposed to corroborate the predictions of this general approach.Comment: 7 pages, 2 figures. Accepted for publication in Europhysics Letter

    Web Site Legal Issues

    Get PDF

    Optimization of nanostructured permalloy electrodes for a lateral hybrid spin-valve structure

    Full text link
    Ferromagnetic electrodes of a lateral semiconductor-based spin-valve structure are designed to provide a maximum of spin-polarized injection current. A single-domain state in remanence is a prerequisite obtained by nanostructuring Permalloy thin film electrodes. Three regimes of aspect ratios mm are identified by room temperature magnetic force microscopy: (i) high-aspect ratios of m≥20m \ge 20 provide the favored remanent single-domain magnetization states, (ii) medium-aspect ratios m∼3m \sim 3 to m∼20m \sim 20 yield highly remanent states with closure domains and (iii) low-aspect ratios of m≤3m \le 3 lead to multi-domain structures. Lateral kinks, introduced to bridge the gap between micro- and macroscale, disturb the uniform magnetization of electrodes with high- and medium-aspect ratios. However, vertical flanks help to maintain a uniformly magnetized state at the ferromagnet-semiconcuctor contact by domain wall pinning.Comment: revised version, major structural changes, figures reorganized,6 pages, 8 figures, revte

    Perturbation of strong Feller semigroups and well-posedness of semilinear stochastic equations on Banach spaces

    Full text link
    We prove a Miyadera-Voigt type perturbation theorem for strong Feller semigroups. Using this result, we prove well-posedness of the semilinear stochastic equation dX(t) = [AX(t) + F(X(t))]dt + GdW_H(t) on a separable Banach space E, assuming that F is bounded and measurable and that the associated linear equation, i.e. the equation with F = 0, is well-posed and its transition semigroup is strongly Feller and satisfies an appropriate gradient estimate. We also study existence and uniqueness of invariant measures for the associated transition semigroup.Comment: Revision based on the referee's comment
    • …
    corecore